
SCORE Milestone 4 Project Evaluation

Team Members:
Charlie Collins, ccollins2021@my.fit.edu
Michael Komar, mkomar2021@my.fit.edu
Logan Klaproth, lklaproth2021@my.fit.edu
Tommy Gingerelli, tgingerelli2021@my.fit.edu

Faculty advisor/client:

●​ Dr. Mohan - rmohan@fit.edu

Milestone 4 Progress

Task Completion Charlie Logan Michael Tommy To Do

Finish
Auto Test

90% 20% 40% 0% 40% Handle custom
verifiers.

Implement
user auth

100% 50% 0% 50% 0% N/A

Implement
web app
front end

75% 35% 35% 30% 0% Sign in
component,
view
submission
component.

System
Integration

90% 60% 0% 20% 20% Handle file
transfer.

mailto:rmohan@fit.edu

Discussion of accomplished tasks:
Task 1 (Finish Auto Test): The auto test module was started during the last milestone, resulting in
the functionality to create a docker container that runs a user specified program with user
specified input. To finish the auto test module, this milestone we added the ability to save the
output from the docker to a file, and created a python server to manage the auto test. Saving to a
file external to the docker allows the server to gather the feedback on a submission. This
includes not only what tests were passed or failed, but also the professor specific feedback that is
associated with a failed test case. This feedback is then written to a file so that it can be viewed
through either interface. The python server is used to maintain a queue of files that need to be
tested, and will pass them to the docker module as resources become available. This server also
waits for assignments to be finished running before passing the output to the feedback module
which will create the feedback and write it to a file.

Task 2 (Implement User Auth): This task involved creating functionality to verify who was using
the application. Up to this point, for development purposes, we just had the ability to give a
user's name to “login” to the application as that user. However, with this task, we implemented
Google OAuth to verify the users. OAuth is an open authorization protocol that we leveraged for
authentication. Essentially, on startup, the application makes a request to the Google OAuth
server and opens a web browser on the client’s machine to the OAuth page. The user then
follows Google’s steps to sign in and authorize SCORE. After this, the application receives an id
token that we can eventually exchange with Google’s server to access some user information. Of
this information, SCORE uses the user's email. Since this email is the primary key of our user
database, once we receive the user’s email from Google, we can sign the user in.

Task 3 (Implement Web App Front End): From the beginning, the intention of the project was to
have two interfaces, a command line shell interface as well as a web app interface. Up to this
point, we had only made development efforts to the command line interface, so with this task, we
are starting the web app interface by implementing the front end. To implement the front end,
we used the React javascript framework. React works through the use of components written in
jsx, which allows us to easily divide the work of the front end. The primary focus of our
development efforts was to implement all of the main functionality, which we were able to
accomplish. On the professor end, we made the create assignment component as well as the
professor dashboard component. On the student end, we made the view assignment, submit
assignment, and student dashboard components. However, there are some stylistic and UI
improvements that we still plan to make going forward.

Task 4 (System Integration): With the completion of the auto test and user authentication
modules, there was a need to have dedicated development time to system integration. This was
because these modules, while working, were working independently, so the goal of this task was
to make these components communicate with each other, so that they act as one server. The
main components that we integrated were the Rust shell server, the python auto test manager, and
the user authentication functionality. The Rust server and user authentication were integrated
through multithreading of the main Rust thread. We then used some semaphores and a mutex
guarded string to communicate the id token retrieved by the OAuth with the main rust thread.
The other main integration was between the Rust server and the python auto test manager. This
was done with a tcp connection, as that was the most efficient way to communicate between
these two separate modules. On the Rust side, it maintains a list of user submitted files, and
sends a tcp message to the python manager every 30 seconds containing all the files in the list.
On the python side, a separate thread was used to monitor this tcp stream and to add the files to
the queue of files to be tested. The only work left to do is some integration with the sftp module
that handles the file transfers.

Discussion of member contribution:
Charlie: This milestone I played a part in most of the tasks that were being worked on. The first
task that I worked on was user authentication. I worked with Michael to create a working demo
of OAuth in a cli application. Once we had this done, I worked on making this demo into a
function that could easily be ported into the rust client. After user authentication, I began
working on the front end. I made the create assignment, view assignment, submit assignment,
and user components, as well as some odds and ends as needed. Next I worked on the auto test
task. While this was mostly completed by Logan and Tommy, I created the thread that listens to
the tcp stream and adds files to the queue. Finally, as the milestone came to end, I worked on the
integration task. I created a new thread in the rust server that maintained the list of submitted
files and sent them in a tcp stream to the python manager.

Michael: At the beginning of the milestone, Charlie and I combined our efforts to create a
working demo of Google OAuth in a command line application. After we finished this, I worked
on storing the client ID and client secret in an env file for security before it was integrated into
the rust client. After user authentication, I worked on the front end for the web application. The
components that I made were the card list, student card, and professor card components. These
make up the main portion of the student and professor dashboard.
​
Tommy: I spent this milestone working on the python manager for the auto test portion of the
application. This involved making separate threads for the auto test handler and the feedback
handler. The auto test handler contains a loop that iterates through each submitted file and
makes an auto test object, constructed with the appropriate information to run the auto test. This

object is then moved to a thread where its main function is executed. Similarly, the feedback
handler iterates through a list of tested files, and creates a feedback object for each one. This
object is then moved to its own thread where its main function is executed. This process will
result in the feedback for the submission to be contained in the description json file for that
submission.

Logan: I started this milestone working on the auto test task. My main contribution was to the
auto test object. In the previous milestone, I created a python script that would create a docker
container, and run a user specified file. For this milestone, I converted this script to an object to
make it easier to be called by the python manager. I also added the functionality to save the
output to a user specified output file, so that feedback can be generated. After I completed my
portion of the auto test task, I went on to work on the web app front end. The components I
completed were header, navigation, and dashboard. On top of that, I handled the routing for the
application so that it switches between the different components properly.

Task Matrix for Milestone 5:

Task Charlie Logan Michael Tommy

Implement web
app back end

40% 20% 40% 0%

Implement
grading portal

20% 20% 0% 60%

Conduct
evaluation and
analysis

25% 25% 25% 25%

Create senior
design poster

10% 40% 40% 10%

Discussion of Milestone 4 Tasks
Task 1 (Implement web app back end): With the front end of the web application being
completed in the previous milestone, the next step is to implement the backend of the web app
interface. This backend will be implemented in Node.js, and will interact with the SCORE
server. We plan to accomplish this by having the node server act similar to the rust server. This
means that it will call the appropriate python modules when the user interacts with them in the
front end, as well as notifying the python manager on new submissions. With the completion of
this task, both of the interfaces to the application will be complete.
Task 2 (Implement grading portal): In the previous milestone we completed the auto testing
portion of the application. This means that all submissions will now be graded, so we need to
make the functionality for the professor to interact with these grades. This means not only

viewing the score, but also being able to view the source code, modify the grades, and apply an
assignment wide curve. This will also be the place where the professor will be able to upload the
grades to canvas, as well as view the MOSS scores, although these will both be done at the next
milestone.
Task 3(Conduct evaluation and analysis): At this point, the main functionality of the SCORE
application will be complete. This means that we will be able to start conducting our evaluation
and then analyze the results. The evaluations we will conduct will be testing the accuracy of our
auto testing component by running code that we know whether should pass or fail. It is
imperative that the accuracy be as close to 100% as possible. We also want to demo SCORE to
users and get feedback. We have talked with Dr. Mohan about doing a trial run in his class, but
depending on the progress at the time of this testing, we might limit the demo to a few students
and work closely with them to get feedback.
Task 4 (Create senior design poster): As we near the senior design showcase, we will need to
make a poster. We want this to contain images of our interfaces, as well as showing off the
evaluations, so we will wait until the end of this milestone to make this poster.​

Dates of meetings with the client/advisor:
2/5/2025 at 4 pm
2/19/2025 at 4 pm

Client/Advisor feedback
Task 1 (Finish Auto Test):

●​ It will be sufficient to just allow for a set number of submissions languages
●​ The professor should be able to specify which languages are to be accepted

○​ This can be multiple languages
●​ Ensure that outputs can be tested with a professor provided verifier

○​ Not everything will be scored using diff
Task 2 (Implement User Auth):

●​ My only concern is that some professor may not have google accounts
○​ Consider allowing other types of email than school emails or other types of

authentication
Task 3 (Implement web app front end):

●​ Create assignment:
○​ Make the configure auto test a checkbox
○​ Make the number of submissions infinite by default
○​ Make the input for the number of submissions a text box rather than a drop down
○​ Make it possible to upload a text file for the test cases
○​ Add a verifier column

Task 4 (System Integration):
●​ None given

Faculty Advisor Signature: ______________________________

Date: ___________________

Evaluation by Faculty Advisor

●​ Faculty Advisor: detach and return this page to Dr. Chan (HC 209) or email the
scores to pkc@cs.fit.edu

●​ Score (0-10) for each member: circle a score (or circle two adjacent scores for .25 or
write down a real number between 0 and 10)

Charlie
Collins

0 1 2 3 4 5 5.5 6 6.6 7 7.5 8 8.5 9 9.5 10

Tommy
Gingerelli

0 1 2 3 4 5 5.5 6 6.6 7 7.5 8 8.5 9 9.5 10

Michael
Komar

0 1 2 3 4 5 5.5 6 6.6 7 7.5 8 8.5 9 9.5 10

Logan
Klaproth

0 1 2 3 4 5 5.5 6 6.6 7 7.5 8 8.5 9 9.5 10

